Skip to main content

Efficiency Enhancement in a-Plane InGaN/GaN Light Emitters with Carbon Nanotubes

Buy Article:

$107.14 + tax (Refund Policy)

This study investigates the coupling modes of a-plane InGaN/GaN mutiquantum wells (MQWs) with single-walled carbon nanotubes (SWCNTs). The enhancement of light emissions at resonance photon energies can be explained by the surface plasmon coupling of the MQW-SWCNT hybrid structure. The photoluminescence (PL) enhancement ratios of the indigo (2.90 eV) emission from MQWs with SWCNTs reveal three coupling modes at 2.50 eV, 2.97 eV, and 3.42 eV. In addition, the trend of the PL intensity ratios and efficiencies corresponds to that of the PL enhancement ratios. The PL efficiencies for the green (2.46 eV) and indigo (2.90 eV) emissions of SWCNT-coated MQWs are 32% and 110% better than the corresponding values of uncoated MQWs, respectively. The results show that the MQW-SWCNT hybrid structure has the potential to be applied in high-efficiency light emitters in the visible and ultraviolet range.

Document Type: Research Article

Publication date: 01 April 2012

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content