Skip to main content

Application of Scanning Probe Lithography to Graphite Patterning

Buy Article:

$107.14 + tax (Refund Policy)

We applied the scanning probe lithographic technique to a graphite patterning in air and analyzed the patterned sample with the lateral force microscopy and Raman spectroscopy. The local electric field generated from a tip caused either etching or oxidization depending on the electric field intensity in air. We have found that the frictional force between the tip and local oxidized graphite surface was increased remarkably from lateral force analysis. Also, it was found that the graphene layer was peeled from the graphite surface in the etching process, which could be a potential tool as a top–down nano-fabrication process for the graphene nano device without contamination.

Keywords: ATOMIC FORCE MICROSCOPY; GRAPHENE; GRAPHITE; LATERAL FORCE MICROSCOPY; NANOFABRICATION; SCANNING PROBE LITHOGRAPHY

Document Type: Research Article

Publication date: 01 February 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content