Skip to main content

Transmission Through a Scalar Wave Three-Dimensional Electromagnetic Metamaterial and the Implication for Polarization Control

Buy Article:

$105.00 plus tax (Refund Policy)

An interweaving-conductor metamaterial (ICM) is a metamaterial composed of multiple, interlocking, conducting networks. It exhibits unusual optical properties in the low-frequency linear-dispersion regime. In particular, two-network ICM supports only one, non-dispersive mode in the low frequency range, and is best described as an effective medium supporting a scalar wave in full three dimensions. We explore the light transmission properties of such a metamaterial, and the implications of a scalar wave medium for polarization control. Polarizers and polarization rotators with subwavelength sizes are numerically demonstrated.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: METAMATERIAL; POLARIZATION CONTROL; SCALAR WAVE

Document Type: Research Article

Publication date: 01 March 2010

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more