Skip to main content

Direct Growth of Human Enamel-Like Calcium Phosphate Microstructures on Human Tooth

Buy Article:

$107.14 + tax (Refund Policy)

Dental Enamel is the hardest mineralized tissue in the human body which is comprised of nanorod-like hydroxyapatite crystals arranged into a highly organized micro-architectural unit called an enamel prism. In this paper the direct growth of human enamel-like structures on human tooth using fluorapatite/phosphoric acid pastes is explored. SEM images show that the newly formed calcium phosphate crystals can be self-assembled into a similar ordered microstructure as those seen in human enamel. The mechanism of how these structures form is discussed. This work demonstrates the potential of applying nanotechnology to regenerate dental enamel clinically without cells.

Keywords: CALCIUM PHOSPHATE; DENTAL ENAMEL; SELF-ASSEMBLY

Document Type: Research Article

Publication date: 01 February 2009

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content