Skip to main content

Comparison Between the Electrical Properties of ZnO Nanowires Based Field Effect Transistors Fabricated by Back- and Top-Gate Approaches

Buy Article:

$107.14 + tax (Refund Policy)

Large-quality, well-crystallized growth of ZnO nanowires was done via non-catalytic thermal evaporation process on silicon substrate only by using metallic zinc powder and oxygen as source materials for zinc and oxygen, respectively. The electrical properties of the as-grown ZnO nanowires were examined by fabricating a single nanowire based FETs which were fabricated via two approaches, i.e., back- and top-gate approaches by using electron beam lithography (EBL) and photolithography processes. ZnO FETs electrical properties were characterized by I DSV DS and I DSV GS measurement. The fabricated single ZnO nanowire based FETs by back- and top-gate approaches exhibited field effect mobilities of ∼4.25 and ∼12.76 cm2/Vs, respectively. Moreover, the carrier concentrations for the fabricated back- and top-gate FETs were ∼1.6 × 1017 and ∼1.37 × 1018 cm−3, respectively. From our studies it was observed that the fabricated top-gate FETs exhibited higher and good electrical properties as compared to ZnO nanowire FETs fabricated using back-gate approaches.

Keywords: BACK- AND TOP-GATE; FIELD EFFECT TRANSISTORS (FETS); ZNO NANOWIRES

Document Type: Research Article

Publication date: 01 November 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content