Skip to main content

Low Loss High Mesa Optical Waveguides Based on InGaAsP/InP Heterostructures

Buy Article:

$107.14 + tax (Refund Policy)

Low loss high mesa optical waveguides were fabricated on InGaAsP/InP heterostructures by utilizing inductively-coupled-plasma reactive ion etching (ICP-RIE) and electron beam lithography technique. The fabrication process was optimized by measuring sidewall roughness of deep-etched waveguides. Atomic force microscope loaded with carbon nanotude was used to obtain three-dimensional image of the etched sidewall of waveguides. The obtained statistical information such as rms roughness and correlation length was used to theoretically calculate scattering loss of waveguides. Several waveguides with different number of sharp bends and the length were fabricated and their propagation losses were measured by modified Fabry-Perot method. The measured propagation losses were compared with theoretically calculated losses.

Keywords: ATOMIC FORCE MICROSCOPE; FABRY-PEROT LOSS MEASUREMENT; INTEGRATED OPTICS; SCATTERING LOSS; SEMICONDUCTOR OPTICAL WAVEGUIDE; SIDEWALL ROUGHNESS (SWR)

Document Type: Research Article

Publication date: 01 November 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content