Skip to main content

Reversible Hole Engineering for Single-Wall Carbon Nanotubes

Buy Article:

$107.14 + tax (Refund Policy)

Experimental results are provided for reversible generation of holes on single-wall carbon nanotubes and their closing by temperature treatment. The generation of the holes was analyzed by checking the amount of C60 fullerenes that can be filled into the tubes and subsequently transformed to an inner-shell tube. The concentration of the latter was determined from the Raman response of the radial breathing mode. The tube opening process was performed by exposure of the tubes to air at elevated temperatures. This process was found to be independent from the tube diameters. In contrast, the tube closing process was found to depend strongly of the tube diameter. For large diameter tubes (d = 1.8 nm) the activation energy was 1.7 eV whereas for the small diameter tubes this energy was only 0.33 eV. Optimum conditions for tube closing were found to be one hour at 800 °C or 10 minutes at 1000 °C. From the almost identical Raman spectra for the tubes before and after engineering, a predominant generation of the holes at the tube ends is concluded.

Keywords: CONTROLLED OXIDATION; DIAMETER CONTROL; FILLING OF NANOTUBES; PEAPODS; PURIFICATION; RAMAN SPECTROSCOPY; SINGLE-WALL CARBON NANOTUBES

Document Type: Research Article

Publication date: 01 November 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content