Skip to main content

A Hands-on Laboratory and Computational Experience for Nanoscale Materials, Devices and Systems Education for Electronics, Spintronics and Optoelectronics

Buy Article:

$107.14 + tax (Refund Policy)

To enhance the undergraduate and graduate engineering education for nanoscale materials, devices and systems, we report a multi-disciplinary course based on the integration of theory, hands-on laboratory and hands-on computation into a single curriculum. The hands-on laboratory modules span various dimensionalities of nanomaterials as well as applications in logic, memory, and energy harvesting. In the hands-on computational exercises, students simulate the material and the device characteristics, and in some cases, design the experimental process flow to fabricate and characterize the devices and systems. Such a course not only grooms the students for multi-disciplinary collaborative activities in nanoscience and nanoengineering, but also prepares them well for future academic or industrial pursuit in this area.

Keywords: EDUCATION; ENERGY; GRADUATE; NANOELECTRONICS; NANOMATERIALS; NANOTECHNOLOGY; OPTOELECTRONICS; SPINTRONICS; UNDERGRADUATE

Document Type: Research Article

Publication date: 01 March 2013

More about this publication?
  • The Journal of Nano Education (JNE) is a peer-reviewed international journal that aims to provide the most complete and reliable source of information on current developments in nanoscale science, technology, engineering, and medical education.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content