Skip to main content

A General Rule for Nanoelectronic Push–Pull Devices Based on Source-σ Bridge-Drain

Buy Article:

$107.14 + tax (Refund Policy)

In this paper we show that, beyond the particular models, utilizing an hybrid equilibrium/nonequilibrium methodologies it is possible to create a general model for organics push–pull nanoscale devices within σ bonds in the backbone. It is shown by direct quantum-mechanic calculations under external electric field and a nonequilibrium calculation based on the ballistic Landauer-Büttiker equation that I–V curves are comparable to the equilibrium charge distribution results. These related models were successfully applied to the alkanethiol derivatives presenting a bi-directional rectification response with two operational regions and a very low commutation lost, thus revealing important applications for communication technologies. These results could provide novel insights to the emerging and fast growth field of molecular electronics.

Keywords: COUPLED QUANTUM MECHANICS/GREEN FUNCTION; DONOR-SIGMA BRIDGE-ACCEPTOR; LANDAUER FORMULA; PUSH-PULL DEVICE; TWO-TERMINAL DEVICE

Document Type: Research Article

Publication date: 01 April 2008

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content