Skip to main content

Decompression Sickness Risk Model: Development and Validation by 150 Prospective Hypobaric Exposures

Buy Article:

$27.00 + tax (Refund Policy)

Pilmanis AA, Petropoulos LJ, Kannan N, Webb JT. Decompression sickness risk model: development and validation by 150 prospective hypobaric exposures. Aviat Space Environ Med 2004; 75:749–759.

Introduction: High altitude exposure has an inherent risk of altitude decompression sickness (DCS). A predictive DCS model was needed to reduce operational risk. To be operationally acceptable, such a theoretical model would need to be validated in the laboratory using human subjects. Methods: The Air Force Research Laboratory (AFRL) has conducted numerous studies on human subjects exposed to simulated altitudes in hypobaric chambers. The database from those studies was used to develop a statistical altitude DCS model. In addition, a bubble growth model was developed using a finite difference method to solve for bubble radius as a function of time. The bubble growth model, integrated with the statistical model, constitutes the AFRL DCS Risk Assessment Model. Validation of the model was accomplished by comparing computer predictions of DCS risk with results from subsequent prospective human subject exposures. There were five exposure profiles, not previously found in the database, covering a wide parameter of ranges of altitude (18,000–35,000 ft), exposure time (180–360 min), prebreathe time (0–90 min), and activity level (rest-strenuous) that were used. The subjects were monitored for DCS symptoms and venous gas emboli. Results: There were 30 subjects who were exposed to each of the 5 altitude profiles. The DCS incidence onset curves predicted by the model were not significantly different from the experimental values for all scenarios tested and were generally within ± 5% of the actual values. Conclusion : A predictive altitude DCS model was successfully developed and validated.

Keywords: DCS; altitude; bubble growth; decompression; decompression sickness; emboli; hypobaric; model; prebreathe; preoxygenation; venous gas emboli

Document Type: Research Article

Publication date: 01 September 2004

More about this publication?
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content