Skip to main content

Performance of a Cycloidal Rotor Concept for Micro Air Vehicle Applications

Buy Article:

$35.00 + tax (Refund Policy)

The viability of a cyclorotor for powering a hover‐capable micro air vehicle (MAV) was examined by making performance and flow field measurements. Parametric studies were conducted to determine the dependence of performance on rotational speed, the amplitude of the blade pitch, the blade airfoil shape, and blade flexibility. All of the experiments were conducted using a three‐bladed cyclorotor system, which was built light enough to be used on an actual flight‐capable MAV. While higher blade pitch angles were found to improve performance and increase the power loading of the cyclorotor, significant bending and torsional flexibility of the blades had a deleterious effect on performance. Blade section camber also proved to be detrimental to overall performance. Force measurements showed the presence of a significant sideward force on the cyclorotor (along with the vertical thrust force), analogous to that found on a spinning circular cylinder. Particle image velocimetry (PIV) measurements made in the wake of the cyclorotor provided evidence of a significant wake skewness, which was produced by the sideward force. The thrust produced by the cyclorotor was found to increase until a blade pitch angle of 45° was reached without showing any signs of blade stall. This behavior was also explained using the PIV measurements, which indicated evidence of a stall delay as well as possible increases in lift on the blades from the presence of a leading edge vortex.

Document Type: Research Article

Affiliations: Alfred Gessow Rotorcraft Center, Department of Aerospace Engineering, Glenn L. Martin Institute of Technology, University of Maryland, College Park, MD

Publication date: 01 April 2010

More about this publication?
  • The Journal of the AHS is the world's only scientific journal dedicated to vertical flight technology. It is a peer-reviewed technical journal published quarterly by The Vertical Flight Society and presents innovative papers covering the state-of-the-art in all disciplines of VTOL design, research and development. (Please note that VFS members receive significant discounts on articles and subscriptions.)

    Journal subscribers who are VFS members log in here if you are not already logged in.

    Authors can find submission guidelines and related information on the VFS website.

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content