Skip to main content

Open Access Carbamoylcholine Chloride Induces a Rapid Increase in IL6 in the Nasal Cavity of C57BL/6 Mice

Mice are widely used as models to study the roles of chemokines and cytokines in immune and inflammatory responses. In our work to determine the basal levels of cytokines in saliva, nasal wash fluid (NWF), bronchoalveolar lavage fluid (BALF), and serum of mice, we found that injection of carbamoylcholine chloride, used to stimulate saliva production, induced variations in the interleukin (IL) 6 levels of NWF and BALF supernatants. To characterize this response, C57BL/6 mice were given 10 g carbamoylcholine chloride intraperitoneally and euthanized at 0, 1, 3, 6, 12, 24, 48, 72, and 96 h after injection. IL6 was increased in NWF supernatants by 2 to 3 h, remained elevated for 24 h, and declined by 48 h after injection. To determine whether carbamoylcholine chloride increased Th1 cytokine (IL2, IL12[p70], and interferon ), Th2 cytokine (IL4, IL5, and IL10), granulocyte–macrophage colony-stimulating factor (GM-CSF), or proinflammatory cytokine (IL1 , tumor necrosis factor α, and IL6 in saliva and serum) levels, mice were given 10 g carbamoylcholine chloride and euthanized. In 47 mice, all cytokine levels in saliva supernatants, NWF supernatants, BALF supernatants, and serum were within normal reported levels (range, 1 to 364 pg/ml); in the serum of the remaining 3 mice, GM-CSF, IL1, and IL2 levels were increased. In summary, carbamoylcholine chloride induces a rapid, elevated IL6 response in the nasal cavity and respiratory tract of mice but does not alter the levels of other Th1, Th2, or proinflammatory cytokines.

Document Type: Miscellaneous

Publication date: 01 August 2007

More about this publication?
  • Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.

    Attention Members: To access the full text of the articles, be sure you are logged in to the AALAS website.

    Attention: please note, due to a temporary technical problem, reference linking within the content is not available at this time

  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • For issues prior to 1998
  • Institutional Subscription Activation
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content