Skip to main content

Removal of Molybdate Anions from Water by Adsorption on Zeolite-Supported Magnetite

Buy Article:

$22.00 plus tax (Refund Policy)

Industrial wastewater may contain high molybdenum concentrations, making treatment before discharge necessary. In this paper, the removal of molybdate anions from water is presented, using clinoptilolite zeolite coated with magnetite nanoparticles. In batch experiments the influence of pH, ionic strength, possible interfering (oxy)anions, temperature and contact time is investigated. Besides determination of kinetic parameters and adsorption isotherms, thermodynamic modeling is performed to get better insight into the adsorption mechanism; molybdenum is assumed to be adsorbed as a FeOMoO2(OH).2H2O inner-sphere complex. At the optimum pH of 3, the adsorption capacity is around 18 mg molybdenum per gram adsorbent. The ionic strength of the solution has no influence on the adsorption capacity. Other anions, added to the molybdenum solution in at least a tenfold excess, only have a minor influence on the adsorption of molybdenum, with the exception of phosphate. Adsorption increases when temperature is increased. It is demonstrated that the adsorbent can be used to remove molybdenum from industrial wastewater streams, and that the limitations set by the World Health Organization (residual concentration of 70 μg/l Mo) can easily be met.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: adsorption; molybdate; molybdenum; zeolite-supported magnetite nanoparticles; oxyanions; wastewater treatment

Document Type: Research Article

Affiliations: 1: University of Leuven, Laboratory of Applied Physical Chemistry and Environmental Technology, Department of Chemical Engineering, K.U. Leuven, W. De Croylaan 46, B-3001 Leuven, Belgium 2: Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, SK-043, Kosice, Slovakia 3: Laboratory of General and Inorganic Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, Gr-540 06, Thessaloniki, Greece

Publication date: 2012-09-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more