Skip to main content

Arsenic Desorption from Ferric and Manganese Binary Oxide by Competitive Anions: Significance of pH

Buy Article:

$30.00 plus tax (Refund Policy)


Ferric and manganese binary oxide (FMBO) has been used to remediate an arsenic (As)-polluted river in China, but insufficient data was available to (1) evaluate its effects on the environment and (2) propose a feasible strategy of addressing the arsenic-bearing FMBO. The desorption behavior of arsenic in the presence of four competitive anions (i.e., phosphate, silicate, sulfate, and bicarbonate) at different concentrations was investigated with pH ranging from 3 to 11. The presence of these anions promoted the desorption of arsenic from arsenic-bearing FMBO and followed the sequence of phosphate > silicate > sulfate ≈ bicarbonate across a wide pH range. Desorption of arsenate (As[V]) was more significant than that of arsenite (As[III]). Sequence dissolution of arsenic-bearing FMBO particles by NH4-oxalate/oxalic acid and hydrochloric acid were performed. The laboratory results indicated that As(III) was primarily occluded in the crystalline parts of the FMBO. The desorption behavior of arsenic could be described by kinetic models using the Elovich and power function equations under different pH conditions and was related to the adsorption of phosphate and silicate. pH played an important role in the desorption of arsenic, because of its effects on the species distribution of anions, surface charge of the arsenic-bearing FMBO, and subsequent electrostatic forces between anions and FMBO.

Keywords: arsenic; competitive anions; desorption; ferric and manganese binary oxide (FMBO)

Document Type: Research Article


Publication date: 2012-06-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research� (WER�) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more