Skip to main content

Effect of Artificial Aeration, Temperature, and Structure on Nutrient Removal in Constructed Floating Islands

Buy Article:

$30.00 plus tax (Refund Policy)

To study the optimal performance characteristics and maximize the removal efficiency of contaminants by the constructed floating islands (CFIs), four kinds of parallel pilot-scale CFIs with different structures were set up outdoors to treat eutrophic water for approximately 6 months. The contribution of artificial aeration to nutrient removal on the basis of gas-water ratios was investigated, and the influences of the structure and temperature were evaluated simultaneously. It was noted that the nutrient removal rate of the multi-medium CFI was greater than those of others. In the four kinds of units, aeration could significantly increase the nutrient removal efficiency, and a gas-water ratio of 10 was adequate for the relatively high removal of nutrients. Using the aforementioned gas-water ratio of 10 and a hydraulic residence time (HRT) of 2 days, the mean removal efficiencies of the multi-medium CFI for NH3-N and total phosphorus were 71.7% and 63.6%, respectively—approximately twice as great as those in the non-aerated system. Furthermore, temperature was an important factor for nutrient removal in the multi-medium CFI. With the water temperature of >13 °C and the HRT of 2.5 days, the mean removal efficiencies for NH3-N and total phosphorus were 87.6% and 83.5%, respectively, whereas the removal efficiency decreased significantly when the temperature was lower than 13°C.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: aeration; constructed floating island; eutrophication; gas-water ratio; nutrient; temperature

Document Type: Research Article

Publication date: 2012-05-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more