Skip to main content

Precise Adsorption Behavior and Mechanism of Ni(II) ions on Nano-Hydroxyapatite

Buy Article:

$30.00 plus tax (Refund Policy)


The goal of this study was to synthesize use of hydroxyapatite as a high-efficiency adsorbent for Ni(II) ions, and to study its adsorption behavior. Three tests— Fourier-transform infrared spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller —were carried out to determine the chemical functionality of the hydroxyapatite powders, to observe its crystal morphology, and to measure the specific surface area. Results indicate that proves the n-HA synthesized by chemical precipitation is an effective adsorbent for the removal of Ni(II) ions from water solution. The synthesized, needle-like nano-hydroxyapatite (n-HA) have a uniform average size of 31.9 × 21.3nm, a large specific surface area (135 m2/g), and typically is a weak crystal with a broad pore distribution. The adsorption isotherm shows the Langmuir model is applicable only when the initial Ni2+ concentration is lower than 0.1 mol/L. Multilayer adsorption was attributed to uneven pore distribution that occurred at higher Ni2+ concentration. The adsorption of Ni2+ onto n-HA was attributed to electrostatic attraction, ion exchange, and dissolution-precipitation reaction. As the result, Ni2+ substitutes Ca2+ and binds with the oxygen atom on the surface, which resulted from the change in crystal-phase composition and in the binding energy of surface elements of n-HA before and after adsorption.

Keywords: Nano-hydroxyapatite; Ni(II) ions; XPS; adsorption behavior

Document Type: Research Article


Publication date: 2010-11-01

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free ContentFree content
  • Partial Free ContentPartial Free content
  • New ContentNew content
  • Open Access ContentOpen access content
  • Partial Open Access ContentPartial Open access content
  • Subscribed ContentSubscribed content
  • Partial Subscribed ContentPartial Subscribed content
  • Free Trial ContentFree trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more