Enhanced Degradation of Chlorobenzene in Aqueous Solution Using Microwave-Induced Zero-Valent Iron and Copper Particles

$30.00 plus tax (Refund Policy)

Buy Article:


Microwaves were applied to reduce the activation energy of chlorobenzene in aqueous solution and enhance its removal using nano-scale zero-valent iron (Fe0) or zero-valent copper (Cu0) particles as dielectric media. When Fe0 and Cu0 particles absorb microwave energy, the electrical potential difference causes the metal electrons to rotate faster, thus producing more heat. The microwave-irradiated metal particles reduced the chlorobenzene activation energy by 6.1 kJ/mol (13.3 kJ/mol versus 19.4 kJ/mol) for Fe0 and 5.4 kJ/mol (15.8 kJ/mol versus 21.4 kJ/mol) for Cu0 and enhanced the chlorobenzene removal 4.1 times (82.8% versus 20.4%) for Fe0 and 3.7 times (72.1% versus 19.5%) for Cu0. The Fe0 has a higher standard reduction potential than Cu0; it is capable of removing more chlorobenzene than Cu0 (82.8% versus 72.1%). Using the microwave-induced nano-scale iron or copper particle is effective in treating toxic organic substances, as demonstrated in this study.

Keywords: activation energy (Ea); chlorobenzene; microwave; zero-valent copper; zero-valent iron

Document Type: Research Article

DOI: http://dx.doi.org/10.2175/106143009X12529484816033

Publication date: July 1, 2010

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites



Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more