Skip to main content

Phosphate Removal from Aqueous Solution by Adsorption on Modified Giant Reed

Buy Article:

$30.00 plus tax (Refund Policy)


The use of modified giant reed (MGR) as an adsorbent to remove phosphate from an aqueous solution was investigated. The dosage of MGR, pH of the phosphate solution, thermodynamics, and the effects of several factors on kinetics (concentration of phosphate solution, solution temperature, and shaking speed) were studied in batch experiments. The results showed that MGR was particularly effective to remove phosphate and that the effective pH range for the phosphate removal was between 4 and 9. The adsorption process could reach equilibrium in 25┬áminutes. Three kinetic models have been evaluated to fit the experimental data. It was shown that the pseudo-second-order model best described the adsorption kinetics of phosphate on MGR. The low activation energy of the adsorption suggested a physisorption process for phosphate adsorption. The equilibrium isotherm showed that the adsorption system was consistent with the Langmuir equation. The negative values of standard free energy (ΔG) and enthalpy (ΔH) indicated that the adsorption of phosphate onto MGR was a spontaneous and exothermic process.

Keywords: adsorption; kinetics; modified giant reed; phosphate; thermodynamics

Document Type: Research Article


Publication date: April 1, 2010

More about this publication?
  • Water Environment Research┬« (WER┬«) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more