Skip to main content

Metals Removal from Stormwater by Commercial and Non‐Commercial Granular Activated Carbons

Buy Article:

$22.00 plus tax (Refund Policy)

Removing dissolved metals from urban stormwater may be required to protect aquatic species in particular watersheds. This research examined the adsorption of zinc and copper on 12 granular activated carbons, of which six were obtained commercially and six were produced by thermal activation of agricultural byproducts in the laboratory. Batch studies were used to obtain single solute distribution coefficients at pH 7. Copper distribution coefficients were higher than those for zinc on each of the 12 adsorbents. Granular activated carbon (GAC) produced from nutshells was less effective than that produced from rice materials (straw and hulls). The rice‐derived GACs had the highest zinc distribution coefficients, and the commercial GACs typically exhibited higher copper distribution coefficients. Distribution coefficients for zinc and copper typically were higher for the materials tested in this study than in previous research, possibly because of the lower dissolved metal concentrations used, which were chosen to represent highway stormwater. Adsorption isotherms were obtained for zinc and copper adsorption on one commercial GAC and on activated rice hulls in buffered laboratory water and in highway stormwater. The constituents in stormwater caused a reduction in sorption of zinc and copper of up to 80%. The results suggest that 1 kg of activated rice hulls could treat up to 7 m3 of stormwater for zinc or 46 m3 of copper before exhaustion at the 90th percentile dissolved concentrations in California highway stormwater. The higher stormwater concentration and lower GAC affinity of zinc means that this constituent typically will limit adsorption system design for removal of multiple metals from stormwater.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: Freundlich isotherm model; agricultural byproducts; competitive adsorption; copper; highway stormwater; low‐cost adsorbents; nutshells; rice hulls; rice straw; zinc

Document Type: Research Article

Publication date: 2010-04-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more