Skip to main content

Development of a Low-Cost Wastewater Treatment System for Small-Scale Wineries

Buy Article:

$30.00 plus tax (Refund Policy)

A pilot-scale winery wastewater treatment system was developed to treat wastewater produced by a small winery (approximately 1200 metric tons of grapes crushed). The pilot system consisted of a sedimentation/aerobic process combined with a bioremediation wastewater cell planted with Juncus ingens. The main design specifications, detailed descriptions of the plant, and analysis of the influent and effluent characteristics (pH, electrical conductivity, total suspended solids, chemical oxygen demand [COD], etc.) are reported for each segment of the system. Over the study period, the mean winery wastewater flowrate was 3.5 m 3/d at organic loads of 5000 to 14 000 mg-COD/L. The study measured average removal rates of 72% for COD and 65% for total organic carbon and dissolved carbon. The application of wastewater to the soil increased the soil salinity in the top 30 cm, but remained stable below this. The system also seemed to be effective at neutralizing the pH of the acidic winery wastewater and at removing the phosphorus pool (65%) in the wastewater, whereas the levels of nitrogen and most of the cations increased in the treated effluent. The absorbing/adsorbing and degradation capacity of the soil of the wastewater bioremediation cell did not appear to be exhausted after one vintage. Juncus ingens appeared to grow moderately well, until the end of the vintage, when dieback began to occur. An infilling with organic matter of the surface soil layer under the root zone was observed, which reduced water infiltration and hence system treatment capacity. The data provide evidence that this is a potentially effective wastewater treatment approach for small wineries located in rural areas.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: bioremediation; chemical oxygen demand; irrigation; soil; treatment; wastewater; winery

Document Type: Research Article

Publication date: 2009-03-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more