Arsenite Oxidation by Immobilized Cells of Alcaligenes faecalis Strain O1201 in a Fluidized-Bed Reactor

Authors: Wang, Yi-Tin; Suttigarn, Arthon; Dastidar, Aniruddha

Source: Water Environment Research, Volume 81, Number 2, February 2009 , pp. 173-177(5)

Publisher: Water Environment Federation

Buy & download fulltext article:


Price: $30.00 plus tax (Refund Policy)


Arsenic(III) oxidation was evaluated in a continuous-flow fluidized-bed reactor (FBR) with Alcaligenes faecalis strain O1201 immobilized in gel beads. The FBR was operated under 300 mg/L citrate and a range of influent As(III) concentrations (75 to 3000 mg/L) at short hydraulic retention times (1.06 to 3.17 hours). The pH and temperature in the FBR were maintained at optimal growth conditions for strain O1201 (pH 7 and 30°C) throughout the study. A total of 10 quasi-steady-state operating conditions were obtained after 54 days of operation under an As(III) concentration of 441 mg/L (10 000 mg/L/d loading rate), with As (III) removal efficiency ranging from 76% to near complete. Material balance analysis over the FBR revealed that the difference between the cumulative influent As (III) and the sum of cumulative effluent As(III) and As(V) was insignificant. The major mechanism of As(III) removal from the FBR is biological oxidation to As(V).

Keywords: arsenic; biological oxidation; bioreactor; biotransformation; gel bead; immobilized cell

Document Type: Research Article


Affiliations: Department of Civil Engineering, University of Kentucky, Lexington, Kentucky.

Publication date: February 1, 2009

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites



Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content

Text size:

A | A | A | A
Share this item with others: These icons link to social bookmarking sites where readers can share and discover new web pages. print icon Print this page