Skip to main content

Adaptive Neuro-Fuzzy Modeling of Head Loss in Iron Removal with Rapid Sand Filtration

Buy Article:

$30.00 plus tax (Refund Policy)


Breakthrough and terminal head loss are the main parameters that determine the performance of rapid sand filters. Carman-Kozeny and Ergun equations can be applied to estimate head loss, but can only be applied to clean filter beds. Elaborated models are needed to predict head loss in dirty filters. In this study, a neuro-fuzzy modeling approach was proposed to estimate head loss in dirty filters. Hydraulic loading rate, influent iron concentration, bed porosity, and operating time were selected as input variables. Various types of membership functions were tried. Two rule-base generation methods—subtractive clustering and grid partition—were used for a first-order, Sugeno-type inference system. Using 11 rules and the grid-partition method, an optimum rule base set was developed and the lowest root mean squared error (RMSE) was obtained.

Tap and deionized waters were used to obtain testing RMSE values of 1.094 and 0.926, respectively. The fit between experimental results and model outputs was excellent, with the multiple correlation coefficient (R 2) greater than 0.99. Based on these findings, the authors conclude that neuro-fuzzy modeling may successfully be used to predict filter head loss.

Keywords: ANFIS modeling; filtration; head loss; iron

Document Type: Research Article


Publication date: December 1, 2008

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more