Skip to main content

Nitrifying Community Analysis in a Single Submerged Attached-Growth Bioreactor for Treatment of High-Ammonia Waste Stream

Buy Article:

$22.00 plus tax (Refund Policy)

This study investigated the nitrifying community structure in a single-stage submerged attached-growth bioreactor (SAGB) that successfully achieved stable nitrogen removal over nitrite of a high-strength ammonia wastewater. The reactor was operated with intermittent aeration and external carbon addition (methanol). With influent ammonia and total Kjeldahl nitrogen ranging from 537 to 968 mg/L and 643 to1510 mg/L, respectively, 85% nitrogen removal was obtained, and effluent was dominated by nitrite (NO2 /NOx >0.95). Nitrifying community analysis using fluorescence in situ hybridization (FISH), with a hierarchical set of probes targeting known ammonia-oxidizing bacteria (AOB) within beta-proteobacteria, showed that the AOB community of the biofilter consists almost entirely of members of the Nitrosomonas europaea/eutropha and the Nitrosococcus mobilis lineages. Image analysis of FISH pictures was used to quantify the identified AOB, and it was estimated that Nitrosomonas europaea/eutropha-like AOB accounted for 4.3% of the total volume of the biofilm, while Nitrosococcus mobilis-like AOB made up 1.2%; these numbers summed up to a total AOB fraction of 5.5% of the total volume on the biofilm. Nitrite-oxidizing bacteria (NOB) were not detectable in the biofilm samples with probes for either Nitrospira sp. or Nitrobacter sp., which indicated that NOB were either absent from the biofilters or present in numbers below the detection limit of FISH (<0.1% of the total biofilm). Nitrite oxidizers were likely outcompeted from the system because of the free ammonia inhibition and the possibility that the aeration period (from intermittent aeration) was not sufficiently long for the NOB to be released from the competition for oxygen with heterotrophs and AOB. The nitrogen removal via nitrite in a SAGB reactor described in this study is applicable for high-ammonia-strength wastewater treatment, such as centrate or industrial wastes.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: ammonia-oxidizing bacteria; fixed-film; nitrifying community structure; nitrite-oxidizing bacteria; nitrogen removal; sidestream treatment

Document Type: Research Article

Publication date: 2007-12-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more