Skip to main content

Characteristics of Granular Sludge Developed in an Upflow Anaerobic Sludge Fixed-Film Bioreactor Treating Palm Oil Mill Effluent

Buy Article:

$30.00 plus tax (Refund Policy)


In the present study, characteristics of the granular sludge (including physical characteristics under stable conditions and process shocks arising from suspended solid overload, soluble organic overload, and high temperature; biological activity; and sludge kinetic evaluation in a batch experiment) developed in an upflow anaerobic sludge blanket fixed-film reactor for palm oil mill effluent (POME) treatment was investigated. The main aim of this work was to provide suitable understanding of POME anaerobic digestion using such a granular sludge reactor, particularly with respect to granule structure at various operating conditions. The morphological changes in granular sludge resulting from various operational conditions was studied using scanning electron microscopy and transmission electron microscopy images. It was shown that the developed granules consisted of densely packed rod- (Methanosaeta-like microorganism; predominant) and cocci- (Methanosarsina) shaped microorganisms. Methanosaeta aggregates functioned as nucleation centers that initiated granule development of POME-degrading granules. Under the suspended solid overload condition, most of the granules were covered with a thin layer of fiberlike suspended solids, so that the granule color changed to brown and the sludge volume index also increased to 24.5 from 12 to 15 mL/g, which caused a large amount of sludge washout. Some of the granules were disintegrated because of an acidified environment, which originated from acidogenesis of high influent organic load (29 g chemical oxygen demand [COD]/L · d). At 60°C, the rate of biomass washout increased, as a result of disintegration of the outer layer of the granules. In the biological activity test, approximately 95% COD removal was achieved within 72 hours, with an initial COD removal rate of 3.5 g COD/L · d. During POME digestion, 275 mg calcium carbonate/L bicarbonate alkalinity was produced per 1000 mg COD removed/L. A consecutive reaction kinetic model was used to simulate the data obtained from the sludge activity in the batch experiment. The mathematical model gave a good fit with the experimental results ( R 2 > 0.93). The slowest step was modeled to be the acidification step, with a rate constant between 0.015 and 0.083 hours −1, while the rate constant for the methanogenic step was obtained to be between 0.218 and 0.361 hours −1.

Keywords: anaerobic granular sludge; kinetic model; palm oil mill effluent; upflow anaerobic sludge fixed-film reactor

Document Type: Research Article


Publication date: 2007-08-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more