Skip to main content

Metal Distributions in Soil Receiving Urban Pavement Runoff and Snowmelt

Buy Article:

$22.00 plus tax (Refund Policy)

Wet and dry deposition of anthropogenic metals and particulates generated from urban and traffic activities can result in contamination of urban-land-use soils. These particulate residuals encompass a wide size gradation, from 1 to greater than 10 000 μm. This study hypothesized that such contamination of surficial soils can be analyzed and explained as a function of the soil/residual granulometry. This study analyzed the gradation-based physical characteristics for 10 urban transportation land-use sites with soil/residual complexes (SRCs) located throughout metropolitan Cincinnati, Ohio, and an urban residential reference site. Particle density (ρ s) of SRCs ranged from 2.8 to 2.1 g/cm 3, with the lower particle density associated with particles less than 100 μm. For each site, specific surface area generally increased with decreasing particle size, while the predominance of total surface area was associated with the coarser size fractions, except for the clayey glacial till reference site not influenced by traffic. Cumulative analysis for lead, copper, cadmium, and zinc associated with SRCs indicated that more than 50% of the metal mass was associated with particles greater than 250 μm, with more than 80% associated with particles greater than 106 μm. Study results are similar to rainfall-runoff and snowmelt distributions. Results provide guidance when considering potential fate and control of metals transported by urban drainage and are distributed across the SRC size gradation.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: anthropogenic residuals; metals; particle density; particle size gradation; rainfall-runoff; snowmelt; soil; specific surface area; traffic; unit operations; urban drainage

Document Type: Research Article

Publication date: 2007-07-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more