Skip to main content

Kinetics of Particulate Organic Matter Removal as a Response to Bioflocculation in Aerobic Biofilm Reactors

Buy Article:

$22.00 plus tax (Refund Policy)

Recent research has identified that the major fraction of chemical oxygen demand in domestic wastewaters is in particulate form. The research presented herein develops the kinetics of particle removal as a response to bioflocculation at the surface of aerobic biofilms. This study focuses on the removal of particles that are maintained in aqueous suspension after 30 minutes of gravity settling. It is helpful to consider the particulate organics removal process in biofilms as the sum of four steps, namely (1) external transport of the particles to the biofilm surface, (2) bioflocculation, (3) organic particulate hydrolysis, and (4) diffusion and reaction of the solubilized organics by the bacterial cells comprising the biofilm. Organic (native corn starch) and inorganic particle (Min-U-Sil 10 [U.S. Silica Company, Berkeley Springs, West Virginia]) suspensions, with micronutrients, were continuously fed to a rotating disc biofilm reactor to verify a first-order kinetic expression that has been used to describe bioflocculation and to demonstrate that bioflocculation is the primary particle removal mechanism. Extracellular polymeric substances were extracted and quantified to describe the role they play in the bioflocculation process.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: biofilm; bioflocculation; extracellular polymeric substances; kinetics; particles; particulate chemical oxygen demand; suspended solids; wastewater

Document Type: Research Article

Publication date: 2007-07-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more