Skip to main content

Application of Computational Fluid Dynamics to Closed-Loop Bioreactors: II. Simulation of Biological Phosphorus Removal Using Computational Fluid Dynamics

Buy Article:

$22.00 plus tax (Refund Policy)

Based on the International Water Association's (London) Activated Sludge Model No. 2 (ASM2), biochemistry rate expressions for general heterotrophs and phosphorus-accumulating organisms (PAOs) were introduced to a previously developed, three-dimensional computational fluid dynamics (CFD) activated sludge model that characterized the mixing pattern within the outer channel of a full-scale, closed-loop bioreactor. Using acetate as the sole carbon and energy source, CFD simulations for general heterotrophs or PAOs individually agreed well with those of ASM2 for a chemostat with the same operating conditions. Competition between and selection of heterotrophs and PAOs was verified using conventional completely mixed and tanks-in-series models. Then, competition was studied in the CFD model. These results demonstrated that PAOs and heterotrophs can theoretically coexist in a single bioreactor when the oxygen input is appropriate to allow sufficient low-dissolved-oxygen zones to develop.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: computational fluid dynamics; heterogeneous; nutrient removal; oxidation ditch; phosphorus; simultaneous

Document Type: Research Article

Affiliations: 1: *Department of Environmental Science, Rutgers University (at time of research); CDM, 2 Penn Center, 1500 JFK Boulevard, Suite 624, Philadelphia, PA 19102; [email protected] 2: CH2M HILL, Englewood, Colorado. 3: Department of Environmental Sciences, Rutgers University.

Publication date: 2007-06-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more