Skip to main content

Peracetic Acid Disinfection: A Feasible Alternative to Wastewater Chlorination

Buy Article:

$22.00 plus tax (Refund Policy)

The paper summarizes the results of a bench-scale study to evaluate the feasibility of using peracetic acid (PAA) as a substitute for sodium hypochlorite both for discharge into surface water and for agricultural reuse. Trials were carried out with increasing doses (1, 2, 3, 5, 10, and 15 mg/L) and contact times (6, 12, 18, 36, 42, and 54 minutes) to study disinfectant decay and bacterial removal and regrowth, using fecal coliform and Escherichia coli ( E. coli) as process efficiency indicators. Peracetic acid decay kinetics was evaluated in tap water and wastewater; in both cases, PAA decays according to first-order kinetics with respect to time, and a correlation was found between PAA oxidative initial consumption and wastewater characteristics.



The PAA disinfection efficiency was correlated with operating parameters (active concentration and contact time), testing different kinetic models. Two data groups displaying a different behavior on the basis of initial active concentration ranges (1 to 2 mg/L and 5 to 15 mg/L, respectively) can be outlined. Both groups had a “tailing-off” inactivation curve with respect to time, but the second one showed a greater inactivation rate. Moreover, the effect of contact time was greater at the lower doses.



Hom's model, used separately for the two data groups, was found to best fit experimental data, and the disinfectant active concentration appears to be the main factor affecting log-survival ratios. Moreover, the S-model better explains the initial resistance of E. coli, especially at low active concentrations (<2 mg/L) and short contact times (<12 minutes).



Microbial counts, performed by both traditional methods and flow cytometry, immediately and 5 hours after sample collection (both with or without residual PAA inactivation), showed that no appreciable regrowth took place after 5 hours, neither for coliform group bacteria, nor for total heterotrophic bacteria.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: kinetics; microbial regrowth; peracetic acid; wastewater disinfection

Document Type: Research Article

Publication date: 2007-04-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more