Skip to main content

Kinetics of Phenol Degradation in an Anaerobic Fixed-Biofilm Process

Buy Article:

$30.00 plus tax (Refund Policy)

Abstract:

A mathematical model was developed to describe phenol degradation in an anaerobic fixed-biofilm process. The model incorporates the mechanisms of diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A pilot-scale column reactor was used to verify the model. Batch kinetic tests were conducted independently to determine the biokinetic parameters used in the model, while shear loss and initial thickness of biofilm were assumed so that the model simulated the substrate concentration results well. The removal efficiency for phenol was approximately 98.5% at a steady-state condition. The model accurately described the effluent substrate concentrations and the sequence of biodegradation in the reactor. The model simulations are in agreement with the experimental results. The approaches presented in this paper could be used to design full-scale anaerobic fixed-biofilm reactor systems for the biodegradation of phenolic substrates.

Keywords: anaerobic fixed-biofilm; kinetics; methane-producing bacteria; model; phenol degradation; phenol-utilizing bacteria

Document Type: Research Article

DOI: http://dx.doi.org/10.2175/106143006X103401

Publication date: June 1, 2006

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites
wef/wer/2006/00000078/00000006/art00007
dcterms_title,dcterms_description,pub_keyword
6
5
20
40
5

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more