Skip to main content

Integrating Decay, Storage, Kinetic Selection, and Filamentous Backbone Factors in a Bacterial Competition Model

Buy Article:

$30.00 plus tax (Refund Policy)


Filamentous bulking in activated sludge systems occurs when filamentous organisms outgrow floc-forming bacteria and interfere with sludge settling. The competition between filaments and floc formers has been described previously using the kinetic selection and filamentous backbone theories. We hypothesized that differences in decay rates and storage abilities also affect this competition. We tested this hypothesis by integrating these four factors into a substrate-utilization model to predict and explain coexistence in a completely mixed reactor. In addition, filamentous and nonfilamentous sludges were developed in laboratory-scale reactors and analyzed to determine decay rates. The modeling results showed coexistence of the two organism types, and sensitivity analysis showed that the kinetic parameters, storage rate constants, and backbone coefficient had the greatest effect on the simulation results. Monte Carlo simulation showed the effect of storage, and the ranges of dilution rates wherein one group outcompeted the other were delineated.

Keywords: bulking; decay rate; filamentous backbone; kinetic selection; modeling; storage

Document Type: Research Article


Publication date: May 1, 2005

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more