Skip to main content

Oxidation–Reduction Potential Changes in Aeration Tanks and Microprofiles of Activated Sludge Floc in Medium- and Low-Strength Wastewaters

Buy Article:

$22.00 plus tax (Refund Policy)

Real-time control of aeration tank operation is key to high-efficiency pollutant removal and energy savings. One of the aims of this study was to examine the potential for using redox potential (oxidation–reduction potential [ORP]) to indicate wastewater quality online in aerationtanks treating medium (chemical oxygen demand [COD] of 70 to 150 mg/L) and low (COD of 15 to 30 mg/L) pollutant-concentration wastewaters. The field-scale data provide a good relationship between ORP values and nutrient removal along the length of the aeration tanks. The ORP values increaseddramatically as organic matter was removed along the aeration tanks, indicating the improvement of the bulk liquor redox status. Dissolved oxygen higher than 1.0 mg/L was necessary for good biodegradation and improvement of the liquid redox status. Nitrification occurred at higher ORP values(380 to 420 mV) than was the case for organic substrate oxidation (250 to 300 mV). The microprofiles obtained from microelectrode measurements substantiate the heterogeneity of the microbial processes inside activated sludge flocs. Because of microbial oxygen utilization, the aerobic regionin the activated sludge floc was limited to the top layer (0.1 to 0.2 mm) of the activated sludge aggregate present in medium-strength wastewater, with an anoxic zone dominating inside the flocs. When dissolved oxygen in the bulk water was higher than 4.0 mg/L, the anoxic zone inside the flocdisappeared. At low wastewater pollutant concentrations, the ORP and dissolved oxygen inside the activated sludge aggregates were higher than those from medium-strength wastewater. The prospect of using ORP as an online control approach for aeration tank operation and the potential reasonsfor activated sludge floc size varying with pollutant strengths are also discussed.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2004-09-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more