If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

Case Study I: Application of the Divalent Cation Bridging Theory to Improve Biofloc Properties and Industrial Activated Sludge System Performance—direct Addition Of Divalent Cations

$30.00 plus tax (Refund Policy)

Buy Article:

Abstract:

The objectives of this study were to examine the application of the divalent cation bridging theory (DCBT) to improve settling, dewatering, and effluent quality in pilot-scale reactors and a full-scale system treating an industrial wastewater. This was accomplished by lowering the monovalent-to-divalent (M/D) cation ratio by direct divalent cation addition. Research has shown that the M/D ratio is a potential indicator for settling and dewatering problems at wastewater treatment plants, and M/D ratios above 2 have been associated with poor settling, dewatering, and effluent quality. The M/D ratio of the wastewater in this study ranged from 6 to 20. The cations studied were calcium and magnesium. Results showed that the addition of calcium improved floc properties compared to control reactors with no calcium addition. The reductions in sludge volume index, effluent chemical oxygen demand (COD), and effluent total suspended solids (TSS) were approximately 35, 34, and 55%, respectively, when the M/D ratio was decreased to approximately 2:1. In addition, the cake solids from a belt filter press simulator increased by 72% and the optimum polymer dose required forconditioning was reduced by 70% in the reactor fed the highest calcium concentration when compared to control reactors with no calcium addition. The addition of calcium also decreased the negative effect of high filamentous organism numbers. In general, the addition of magnesium (Mg2+) had similar effects on effluent quality and dewatering properties, although some differences were measured. A full-scale test using calcium addition was performed. Measurements of effluent quality and floc properties were performed before, during, and after the calcium (Ca2+) addition period. The average M/D ratio during these periods was 6.2, 4.6, and 14.0, respectively. The addition of Ca2+ decreased the effluent five-day biochemical oxygen demand, effluent TSS, and effluent COD. The increased Ca2+ concentration also improved dewatering measured by a decrease in specific resistance to filtration and capillary suction time. Overall, the addition of divalent cations to the pilot- and full-scale activated sludge systems improved floc properties and the data fit well with the DCBT.
More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more