If you are experiencing problems downloading PDF or HTML fulltext, our helpdesk recommend clearing your browser cache and trying again. If you need help in clearing your cache, please click here . Still need help? Email help@ingentaconnect.com

The Effect of Residual Chemical Oxygen Demand on Anoxic and Aerobic Phosphate Uptake and Release with Various Intracellular Polymer Levels

$30.00 plus tax (Refund Policy)

Buy Article:

Abstract:

This study investigated the anoxic and aerobic phosphate uptake and release reactions and the fraction of denitrifying phosphate-accumulating organisms (DPAOs) under various initial chemical oxygen demand (COD) and residual COD conditions. The results showed that DPAOs and non-DPAOs could release phosphate when high soluble COD was present. Consequently, the phosphate-uptake potential was dynamic and increased when the initial COD increased, the initial polyhydroxyalkanoates (PHA) increased, and the residual COD decreased. Furthermore, the electron acceptor (oxygen of nitrate) has more significant influence on the phosphate uptake/release characteristics, while the residual COD concentrations have little influence on that. The fraction of DPAOs to phosphate-accumulating organisms was 42% when the initial PHA storage was enough by both DPAOs and non-DPAOs. This was closely related to the relative phosphate uptake (47%) in the anoxic zone of the process.
More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more