Skip to main content

The Effect of Sodium Chloride on the Two–Step Kinetics of the Nitrifying Process

Buy Article:

$30.00 plus tax (Refund Policy)


Sodium chloride affects the transformation rate of several compounds in bioreactors. Most authors report a decrease in microorganism activity at increasing salt concentrations. In this work, a kinetic model that relates sodium chloride concentration with the rates of each step of the nitrification process is proposed; thus, the effect of sodium chloride concentration (0 to 60 g/L) on the nitritation and nitratation rates was separately studied. To carry out the independent study of each step, a combination of the respirometric method with sodium azide, an inhibitor of the nitratation step, was performed. The dot–blot hybridization technique with 16S rRNA–targeted probes was used to determine the ammoniaoxidizing and nitrite–oxidizing bacterial fraction, then it was possible to relate the culture's function with its biological composition. Rates of both steps were linearly reduced at increasing salt concentrations; the nitratation rate was more affected than the nitritation rate. Simulations carried out in a nitrifying sequencing batch reactor indicate that nitrite might accumulate at high salt concentrations. Sodium chloride exerts a reversible inhibition on ammonia oxidation and nitrite oxidation.


Document Type: Research Article


Publication date: January 1, 2004

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more