Skip to main content

Changes in Anoxic Denitrification Rate Resulting from Prefermentation of a Septic, Phosphorus–Limited Wastewater

Buy Article:

$30.00 plus tax (Refund Policy)

Abstract:

A preliminary bench–scale study of parallel University of Cape Town (UCT) biological nutrient removal systems showed improvement in anoxic denitrification rates resulting from prefermentation of a septic (i.e., high volatile fatty acid [VFA] content), phosphorus–limited (i.e., total chemical oxygen demand/total phosphorus [TP] ratio < 40:1) wastewater. Net phosphorus removals due to enhanced biological phosphorus removal (EBPR) were only improved marginally by prefermentation in spite of significant increases in anaerobic phosphorus release, polyhydroxyalkanoate formation, and higher anoxic and aerobic uptakes. This probably was due to the high VFA/TP ratio in the raw influent relative to the VFA requirements for EBPR because enough VFAs were already present for phosphorus removal prior to prefermentation. An additional assessment of prefermentation using parallel UCT systems with step feed of 50% of the influent to the anoxic zone was completed. This second phase quantified the effect of prefermentation in a step–feed scenario, which prioritized prefermentation use to enhance denitrification rather than EBPR. While specific denitrification rates in the anoxic zone were significantly improved by prefermentation, high denitrification in the clarifiers and aerobic zones (simultaneous denitrification) made definitive conclusions concerning the potential improvements in total system nitrogen removal questionable. The prefermented system always showed superior values of the zone settling velocity and sludge volume index and the improvement became increasingly statistically significant when the prefermenter was performing well.

Keywords: BIOLOGICAL NITROGEN REMOVAL; BIOLOGICAL NUTRIENT REMOVAL; DENITRIFICATION; ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL; PHOSPHORUS; PREFERMENTATION; VOLATILE FATTY ACIDS

Document Type: Research Article

DOI: https://doi.org/10.2175/106143004X141546

Publication date: 2004-01-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more