Skip to main content

High Nitrite Buildup During Nitrification in a Rotating Disk Reactor

Buy Article:

$22.00 plus tax (Refund Policy)

Incomplete nitrification with high nitrite accumulation has three practical advantages: lower oxygen consumption, less need for organics for denitrification, and lower sludge production during denitrification. Nitrification leading to high nitrite formation was experimentally studied in a continuous single rotating disk reactor (RDR) and compared to a modeled continuous completely stirred tank reactor (CSTR). The results of this model show that to accumulate nitrite greater than 50% at oxygen levels higher than 3.5 mg O2/L, pH levels higher than 8.5 and 9.0 are required for a CSTR with and without cell washout, respectively. For a CSTR without cell washout at pH 7 and 1 mg O2/L, it was predicted that a nitrite accumulation less than 5% could be reached. Conversely, for a partially submerged continuous RDR without any additional aeration supply (already at pH 7 and 1.3 mg O2/L), high nitrite accumulation (more than 75%) was achieved and the influence of pH from 7 to 9 was not significant. This difference is believed to be caused by mass transfer. In addition, nitrification was observed to occur under oxygen transport limitation for a totally submerged continuous RDR.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: COMPLETELY STIRRED TANK REACTOR MODEL; IMMOBILIZED NITRIFYING BACTERIA; NITRITE ACCUMULATION; NITRITE BUILDUP; PARTIAL NITRIFICATION; ROTATING DISK REACTOR

Document Type: Research Article

Publication date: 2003-03-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more