Skip to main content

Changing Mesophilic Wastewater Sludge Digestion into Thermophilic Operation at Terminal Island Treatment Plant

Buy Article:

$30.00 plus tax (Refund Policy)

This paper describes the progress up to June 2000 for thermophilic digestion of wastewater sludge at the Los Angeles, California, Bureau of Sanitation's Terminal Island Treatment Plant. The development of the microorganism culture has followed a course similar to that seen at other successful plants for establishment of a stable, well-balanced thermophilic culture in a large digester, but at an accelerated pace. This study began with rapid heating, increasing the temperature of the 4500 m3 (1.2 mil. gal) digester to the target temperature of 55 °C at approximately 3 °C/d. A method of feeding to maximize the rate of culture development was used as feeding accelerated to approximately 400 m3/d (0.1 mgd). An initial rise of acid concentration (primarily acetate) was seen. Within two weeks, acid concentration declined and stabilized, indicating that acidogenic and methanogenic microbial communities came into balance. Coliform data indicate that digester disinfection was stably effective from the middle of April. The salmonella tests done to date satisfy the U.S. Environmental Protection Agency (U.S. EPA) class A specification. Testing with helminth ova and enteric viruses before and after the digester shows satisfaction of class A standard for those organisms. The present combination of low volatile fatty acids and low hydrogen sulfide is good news for odor control. The data show increases in volatile solids destruction and estimated gas production, compared with the previous mesophilic operation; however, large uncertainties have been calculated from the data. As the digester is now operating successfully at the current feed rate, there seems to be no barriers to processing the entire sludge production of the plant. Other results indicate that the U.S. EPA requirements for exceptional quality class A biosolids are likely to be achieved.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: ALKALINITY; BIOGAS; CLASS A BIOSOLIDS; DISINFECTION; FEED RATE; PATHOGENS; THERMOPHILIC OPERATION; VOLATILE ACIDS

Document Type: Research Article

Publication date: 2002-09-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more