Skip to main content

Degradation of Oleic Acid in Anaerobic Filters: The Effect of Inoculum Acclimatization and Biomass Recirculation

Buy Article:

$30.00 plus tax (Refund Policy)

The degradation of oleic acid in anaerobic filters was studied and the effect of an acclimated inoculum and biomass recirculation was evaluated. Three anaerobic filters (R1, R2, and R3) were operated in parallel. The anaerobic filters R1 and R2 were inoculated with nonacclimated biomass, whereas the anaerobic filter R3 was inoculated with acclimated biomass. In the anaerobic filters R2 and R3, biomass settling and recirculation were applied. The use of an acclimated inoculum and biomass recirculation (R3) was beneficial in terms of removal efficiency, which was 4 to 8% higher than in the anaerobic filters R1 and R2 when oleate was the sole carbon source fed to the reactors at an applied organic load of 12.5 kg of chemical oxygen demand (COD)/m3·d, even with an oleate to calcium and magnesium ion molar concentration ratio of 6.8. Biomass recirculation significantly reduced the biomass washout and the toxic effect on the acetogenic and methanogenic populations. The use of an acclimated inoculum was beneficial in terms of methane yield, which was 50% greater than that observed for the reactors inoculated with nonacclimated inoculum for the highest applied organic loading rate (12.5 kg COD/m3·d). At the end of the operation, the biomass was encapsulated by a whitish matter, which was well detected by microscopic examination. When this sludge was incubated in batch vials at 37 °C where no substrate was added, methane production from the adsorbed organic matter was evidenced, attaining a maximum value (at standard temperature and pressure) of 39.7 mL/g volatile solids·d for the biomass taken from R1. With stirring (150 r/min), the methane production rate was 13.8 times higher than under static conditions. When oleate was added to this sludge, methane production was delayed, suggesting that adsorbed matter can be an intermediate of oleate degradation such as stearic, palmitic, myristic, or other saturated acids.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 2001-09-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more