Skip to main content

Oxygen Mass-Transfer Coefficients for Different Sample Containers Used in the Headspace Biochemical Oxygen Demand Test

Buy Article:

$30.00 plus tax (Refund Policy)


To accurately measure the oxygen demand of a wastewater sample in a headspace biochemical oxygen demand (HBOD) or other respirometric test, the rate of oxygen transfer to the aqueous phase must be greater than the oxygen exertion rate by the sample. Oxygen mass-transfer coefficients (Kawa) measured for 28-, 55-, and 160-mL, partially full (18 to 89%) containers placed on their sides on a shaker table and mixed at 200 r/min averaged 8.0 h−1 (range 5.4 to 9.9 h−1). For this mass-transfer coefficient, HBOD values as great as 1340 mg/L·d are possible at the start of an HBOD test, although the maximum daily HBOD declines to 192 mg/L·d at the end of the test because of oxygen depletion in the sample headspace. Mass-transfer coefficients for shaken samples decreased only at low shaking speeds (<50 r/min). Oxygen mass-transfer coefficients for shaken samples were always larger than those (average of 1.8 h−1) measured for samples in a 250-mL bottle mixed with a stir bar on a stir plate. These mass-transfer coefficients indicate that the oxygen demand of typical full-strength municipal wastewaters can be measured in HBOD tests without oxygen transfer limiting the reaction rate.


Document Type: Research Article


Publication date: January 1, 2001

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Partial Open Access Content
Partial Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more