Skip to main content

Variation of Oxidation–Reduction Potential Along the Breakpoint Curves in Low-Ammonia Effluents

Buy Article:

$30.00 plus tax (Refund Policy)

Abstract:

This study was part of an integrated series of investigations conducted at the 6.6 m3/s (150 mgd) City of Phoenix, Arizona, 91st Avenue Wastewater Treatment Plant to improve the chlorination system and optimize chlorine use after the plant was converted to a nitrification– denitrification (NdeN) plant. The objective of this study was to evaluate chlorine breakpoint behavior and assess oxidation–reduction potential (ORP) with different regimes of the breakpoint curve to reflect ORP behavior in a mixed oxidant and reductant environment typical of a chlorine disinfection system in an NdeN plant. The information was also useful for confirming the results of earlier studies on the fate of nitrite-nitrogen (NO2 –N) in chlorine reactions, the phenomenon of microbreakpoint formation, and the relative competition for chlorine between ammonia and organics and between ammonia and other inorganics including NO2 –N. Laboratory analysis included measurement of the chlorine species (free chlorine and mono-, di-, and trichloramines) and NO2 –N, nitrate-nitrogen, ammonia, pH, dissolved oxygen, and ORP in low-ammonia effluents (effluents spiked with various amounts of ammonia) after addition of various chlorine doses.

The study indicated that the overall shape of ORP curves follows the pattern of the breakpoint curves. However, the ORP curves were relatively flat at the monochloramine hump region of the curve. Also, ORP increased sharply at the beginning of the monochloramine region and at the beginning of the free chlorine region. The ORP curves eventually flattened again after the initial steep rise. Thus, at the flat portions of the curve, a marginal advantage could be derived with further increases in chlorine dose, and contact time becomes a critical factor in disinfection efficiency. A dip in the ORP curve was invariably observed at the breakpoint even though the dip was of a lesser degree than that of the residual curve. Greater concentrations of dichloramine (which have a greater ORP than monochloramine) expected at the downswing of the breakpoint curve could not sustain the maximum ORP levels observed at the monochloramine region. This suggested that organochloramines may also be a factor in the ORP dip at the breakpoint. Finally, ORP did not vary in direct proportion to total chlorine residual or in direct proportion to the concentration of individual chlorine residual species. Implications of these results are comparatively discussed with reference to the two methods of chlorination control: chlorine-residual-based control and ORP-based control.

Keywords: AMMONIA; BREAKPOINT CURVE; CHLORINE; DISINFECTION EFFICIENCY; MICROBREAKPOINT; NITRITE; ORGANICS; OXIDATION-REDUCTION POTENTIAL

Document Type: Research Article

DOI: https://doi.org/10.2175/106143000X138193

Publication date: 2000-09-01

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more