
Kinetics of p-Aminoazobenzene Degradation by Bacillus subtilis Under Denitrifying Conditions
Bacillus subtilis is an organism capable of degrading an azo dye, such as p-aminoazobenzene (pAAB), under both aerobic and anoxic conditions. In both cases, pAAB is co-metabolized with a main carbon source and under anoxic conditions denitrification is observed. Kinetic
experiments were carried out with a pure culture of B. subtilis and a mathematical model that accurately describes both biodegradation of pAAB under anoxic conditions and the denitrification process under both carbon- and nitrate- or nitrite-limited conditions is developed. Presence
of pAAB in culture medium causes an inhibition of bacterial growth and of nitrite accumulation. Bacterial growth and pAAB degradation rates are found to be slower under anoxic conditions compared to the corresponding rates under aerobic conditions.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics
Keywords: ANOXIC CONDITIONS; B. SUBTILIS; BIODEGRADATION; DENITRIFICATION; KINETIC MODELING; P-AMINOAZOBENZENE
Document Type: Research Article
Publication date: 1999-05-01
- Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.
Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year. Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present. - Editorial Board
- Information for Authors
- Submit a Paper
- Subscribe to this Title
- Membership Information
- Information for Advertisers
- WEF Bookstore
- Ingenta Connect is not responsible for the content or availability of external websites