Skip to main content

Anaerobic sequencing batch reactor treatment of dilute wastewater at psychrophilic temperatures

Buy Article:

$30.00 plus tax (Refund Policy)

Anaerobic treatment of dilute wastewater was studied using three laboratory-scale anaerobic sequencing batch reactors (ASBRs), each with an active volume of 6 L. The reactors were fed a synthetic substrate made from nonfat dry milk supplemented with nutrients and trace metals. The chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5) of the feed were 600 mg/L and 285 mg/L, respectively. Steady-state performance data were collected over a time period of 2 years at reactor temperatures of 5, 7.5, 10, 12.5, 15, 17.5, 20, and 25°C. Hydraulic retention times (HRTs) were maintained at 24, 16, 12, 8, and 6 hours. Steady-state process kinetics and removal efficiencies were evaluated for the various conditions. Results showed that the ASBR process was capable of achieving more than 90% soluble COD (SCOD) and BOD5, removal at temperatures of 20°C and 25°C at all HRTs. At a temperature of 5°C and a 6-hour HRT, SCOD and BOD5, removals were 62% and 75%, respectively. At intermediate temperatures ranging from 5 to 25°C and HRTs between 24 and 6 hours, removal of soluble organic matter ranged from 62 to 90% for COD and from 75 to 90% for BOD5. In all cases, solids retention times were high enough to maintain good performance. Substrate removal rates and half-saturation coefficients were also determined at all temperatures. The temperature correction coefficient was determined to be 1.08 in the temperature range of 7.5 to 25°C. It is concluded that the ASBR has unique characteristics that enable efficient removal of organics during treatment of dilute wastewaters at low temperatures.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics


Document Type: Research Article

Publication date: 1998-03-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more