Skip to main content

Biodegradation kinetics of carbon tetrachloride by Pseudomonas cepacia under varying oxidation–reduction potential conditions

Buy Article:

$30.00 plus tax (Refund Policy)


In recent years, considerable interest has been given to the in situ degradation of hazardous contaminants by stimulating indigenous microorganisms. Optimization of environmental conditions, especially oxidation–reduction potential (ORP), for metabolism of hazardous constituents by indigenous microorganisms may assist in cost-effective mitigation by enhanced bioremediation.Pseudomonas cepacia, the predominant species, was selected as the microorganism of study to evaluate ORP effects on biodegradation of carbon tetrachloride (CT), a common contaminant in many sites. Titanium (III) citrate was used as a reducing agent to poise ORP at desired levels. Results indicate that initial ORP appears to be critical for initiating the CT degradation process. Substantial CT degradation occurred when cultures were poised at negative ORP conditions, while negligible CT removal was observed at oxidative ORP conditions. Accumulation of chloroform (CF) produced by CT metabolism was not observed, which may be attributed to its metabolism by P. cepacia and another pathway that preclude CF generation. The maximum biodegradation rate was found to occur at approximately −150 mv2 and an overall substrate removal rate constant, K. of 6.9 × 10−3 h−1 was observed at an initial CT concentration of 323 μg/L.


Document Type: Research Article


Publication date: September 1, 1997

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more