Skip to main content

Effects of particulate size in anaerobic acidogenesis using cellulose as a sole carbon source

Buy Article:

$30.00 plus tax (Refund Policy)


Pure cellulose with average diameters of 20 and 50 µm were treated in laboratory-scale CSTRs to study the effect of pH, reactor hydraulic retention time (HRT), and substrate concentration on the rate of anaerobic acidogenesis for those two cellulose particle sizes. The pH effect was studied using a particle size of 20 µm at an HRT of 48 hours while controlling the pH at levels of 5.2, 5.6, 6.0, 6.4, and 6.8. After determining that a pH of 5.6 was optimum, the effect of HRT was evaluated by operating the reactors at HRTs of 24, 36, 48, 60, and 72 hours for both the 20 and 50 µm cellulose sizes. After finding that an HRT of 48 hours was sufficient for acidogenesis, the effect of organic loading rate (OLR) was studied by varying the OLR between 2 and 8 g/L/day. The results of the research indicate that the conversion of particulate cellulose to soluble chemical oxygen demand (SCOD) ranged from 31% (pH 6.8) to 44% (pH 5.6). The HRT studies illustrated that a substrate with a smaller particle size (20 µm) and operation at a longer HRT resulted in a higher conversion to SCOD compared with a larger particle size (50 µm) and operation at a shorter HRT. It was also observed that the effluent SCOD increased proportionally with increases in the influent particulate COD.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Data/Media
No Metrics

Keywords: anaerobic digestion; cellulose; first phase; hydrolysis and acidogenesis; particulate size

Document Type: Research Article

Publication date: 1994-07-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more