Molecular oxygen and the adsorption of phenols—effect of functional groups

$30.00 plus tax (Refund Policy)

Buy Article:

Abstract:

ABSTRACT:

This study reveals that the presence of molecular oxygen (oxic conditions) has a significant impact on the exhibited adsorptive capacity of granular activated carbon (GAC) for several phenolic compounds. The increase in the GAC adsorptive capacity under oxic conditions results from polymerization of these adsorbates on the carbon surface. The mechanism of polymer formation is through oxidative coupling of phenolic molecules. The extent of an increase in the GAC adsorptive capacity is in accordance with the ease of oxidation of these compounds. However, substituting a nitro group on the parent phenol molecule suppressed polymerization reactions and no increase in the GAC adsorptive capacity was observed under oxic conditions for these substituents.

Keywords: activated carbon; adsorptive capacity; oxidative coupling; phenolics

Document Type: Research Article

DOI: http://dx.doi.org/10.2175/WER.65.2.8

Publication date: March 1, 1993

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more