Skip to main content

Development of an off-line enricher-reactor process for activated sludge degradation of hazardous wastes

Buy Article:

$22.00 plus tax (Refund Policy)


The improvement in degradation of a hazardous chemical using a novel bioaugmentation scheme was studied. Bench-scale offline batch enricher-reactors (ERs) maintaining an enrichment culture were used to bioaugment bench-scale continuous-flow activated sludge reactors treating 1-naphthylamine (1NA). In batch experiments, onetime bioaugmentation inoculations of 1, 2, 5, 10, 20, and 50% by mass of a INA-degrading culture (mg mixed liquor volatile suspended solids [MLVSS] of INA-degrading culture/mg MLVSS of indigenous culture) increased degradation rates by approximately 0, 33, 100, 100, 100, and 300% respectively over an uninoculated control. In continuous-flow experiments, separate 13.7-L reactors received daily inoculations of 1.4, 2.5, 6.6, 11.4, and 18.3% by mass of 1 NA-degrading culture. Cumulative target compound breakthrough reduction following a 50 mg 1NA/L spike was 13, 21, 11, 35, and 41% compared to an unacclimated control and 4, 13, 1, 27, and 35% compared to an acclimated control, respectively. Similarly, the reduction in breakthrough during reacclimation to 5 mg 1NA/L over six days was 66, 73, 85, 98, and 100%, respectively. A 6% bioaugmented continuous-flow reactor significantly reduced 1NA breakthrough following a step-loading increase from 1 to 5 mg 1NA/L compared to an uninoculated control. Effective bioaugmentation was achieved with additions of biomass equivalent to 14-25% of indigenous cell production rates.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Keywords: 1-naphthylamine; activated sludge; bioaugmentation; biodegradation; enricher-reactors; hazardous wastes

Document Type: Research Article

Publication date: 1992-09-01

More about this publication?
  • Water Environment Research (WER) is published monthly, including an annual Literature Review. A subscription to WER includes access to the latest content back to 1992, as well as access to fast track articles. An individual subscription is valid for 12 months from month of purchase.

    Water Environment Research (WER) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more