Methanotrophic bacteria for nutrient removal from wastewater: attached film system

$30.00 plus tax (Refund Policy)

Buy Article:

Abstract:

ABSTRACT:

It was hypothesized that nutrient removal from wastewater could be achieved by using methane oxidizing bacteria (methanotrophs). Because methane is inexpensive, it can be used as an energy source to encourage bacterial growth to assimilate nitrogen and phosphorus and other trace elements. This initial feasibility study used synthetic nutrient mixtures and secondary sewage effluent as feed to a laboratory-scale methanotrophic attached-film expanded bed (MAFEB) reactor operated at 35°C and 20°C. The MAFEB system operated successfully at low nutrient concentrations under a variety of nutrientlimited conditions. Using a synthetic nutrient mixture with a nitrogemphosphorus feed ratio(w/w) of 9:1, phosphate concentrations were reduced from 1.3 mg P/L to below 0.1 mg P/L, and ammonia was reduced from 12 mg N/L to approximately 1 mg N/L on a continuous flow basis, with a bed hydraulic retention time of 4.8 hours. The average nutrient uptake rates from synthetic nutrient mixtures were 100 mg nitrogen and 10 mg phosphorus/L of expanded bed/d. Nutrient assimilation rates increased with increasing growth rate and with increasing temperature. Nitrogen/ phosphorus uptake ratios varied from 8 to 13, and the observed yield varied from 0.11 to 0.16 g volatile solids (VS)/ g chemical oxygen demand (COD). Nutrient removal from secondary sewage effluent was successfully demonstrated using sewage effluent from two local treatment plants. Nutrient concentrations of 10-15 mg N/L and 1.0-1.8 mg P/L were reduced consistently below 1 mg N/L and 0.1 mg P/L. No supplemental nutrients were added to the sewage to attain these removal efficiencies since the nutrient mass ratios were similar to that required by the methanotrophs. Removal rates were lower at 20°C than at 35°C, but high removal efficiencies were maintained at both temperatures. Effluent suspended solids concentrations ranged from 8 to 30 mg volatile suspended solids (VSS)/L, and the effluent soluble COD concentration averaged 30 mg/L.

Keywords: attached film; expanded bed; methanotrophs; nutrient; removal; secondary effluent

Document Type: Research Article

DOI: http://dx.doi.org/10.2175/WER.64.6.2

Publication date: September 1, 1992

More about this publication?
  • Water Environment Research® (WER®) publishes peer-reviewed research papers, research notes, state-of-the-art and critical reviews on original, fundamental and applied research in all scientific and technical areas related to water quality, pollution control, and management. An annual Literature Review provides a review of published books and articles on water quality topics from the previous year.

    Published as: Sewage Works Journal, 1928 - 1949; Sewage and Industrial Wastes, 1950 - 1959; Journal Water Pollution Control Federation, 1959 - Oct 1989; Research Journal Water Pollution Control Federation, Nov 1989 - 1991; Water Environment Research, 1992 - present.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Membership Information
  • Information for Advertisers
  • WEF Bookstore
  • ingentaconnect is not responsible for the content or availability of external websites

Tools

Favourites

Share Content

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
X
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more