Skip to main content

Evaluation of Nitrification Kinetics for a 2.0 MGD IFAS Process Demonstration

Buy Article:

$17.50 plus tax (Refund Policy)

Or sign up for a free trial

Abstract:

The James River Treatment Plant (JRTP) operated a 2 MGD Integrated Fixed Film Activated Sludge (IFAS) demonstration process from November 2007 to April 2009 to explore IFAS performance and investigate IFAS technology as an option for a full scale plant upgrade in response to stricter nutrient discharge limits in the James River Basin. During the study, nitrification kinetics for both ammonia and nitrite oxidizing bacteria and plastic biofilm carrier biomass content were monitored on a near-weekly basis comparing the IFAS media, the IFAS process mixed liquor, and mixed liquor from the full-scale activated sludge process. Carrier biomass content was variable with respect to temperature and process SRT and was correlated with of nitrification activity localization in the IFAS basin. Similar to trends observed for carrier biomass content (Regmi, 2008), ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) activity shifted from the fixed film to the suspended phase as water temperatures increased and vice versa as the temperature decreased. During the highest temperatures observed in the IFAS tank, AOB activity on the media contributed as little as 30% of the total nitrification activity in the basin, and after temperatures dropped below 20 °C, AOB activity in the fixed film phase made up 75% of the total activity in the IFAS basin. During the warmest period of the summer, the media still retained more than 60% of the total NOB activity, and more than 90% of the total NOB activity during the period of coldest water temperature. This trend also points out that some AOB and NOB activity remained in the mixed liquor, even during the coldest periods. The retention of nitrification activity in the mixed liquor indicates that the constant sloughing of biomass off of the carriers allowed for autotrophic activity, even during washout conditions. Carrier biomass content and nitrification rates on the IFAS media remained constant along the length of the basin, indicating that the IFAS tank is will mixed with respect to biomass growth, although there was a concentration gradient for soluble species (NH4-N, NO2-N, NO3-N).

Keywords: IFAS; ammonia oxidizing bacteria; nitrification; nitrite oxidizing bacteria; nitrogen removal

Document Type: Research Article

DOI: https://doi.org/10.2175/193864709793900933

Publication date: 2009-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more