Skip to main content

A New Method for the Measurement of Sludge Shear to Optimize the Conditioning and Dewatering Processes

Buy Article:

$17.50 plus tax (Refund Policy)


Shear intensity, shear time, and polymer dose are the main parameters that determine the dewaterability of wastewater sludge. Polymer dose required to condition sludge increases with the increase of shear intensity (G) and shear time (t). Therefore, in order to minimize the polymer demand during conditioning and dewatering, shear should be optimized. Optimization of shear can be achieved if the total shear that the sludge network is exposed to during conditioning and dewatering can be measured and quantified. This is quite a challenge since total shear includes unintended shear introduced during piping, pumping, and dewatering of sludge, and currently there is no direct or indirect technique that can measure the unintended shear in a wastewater treatment plant. Unintended shear increases the polymer demand, which in turn decreases the cake solids concentration and the efficiency of the dewatering process. Thus, quantification of the unintended shear and adjustment of the polymer dose accordingly are essential for the optimization of dewatering processes. The main objective of this study was to develop a method for sludge shear measurement based on the rheological characteristics of sludge and illustrate its possible applications at treatment plants. The results of this study indicate that the rheological characteristics of sludge can be used to estimate an unknown amount of shear that sludge network is exposed to, and this information is important in dewatering optimization.

Document Type: Research Article


Publication date: January 1, 2008

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access.
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • ingentaconnect is not responsible for the content or availability of external websites

Access Key

Free Content
Free content
New Content
New content
Open Access Content
Open access content
Subscribed Content
Subscribed content
Free Trial Content
Free trial content
Cookie Policy
Cookie Policy
ingentaconnect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more