Skip to main content

The Use of a Full-Scale Fluidized Bed Bioreactor System for the Treatment of Perchlorate in Groundwater to Drinking Water Standards

Buy Article:

$9.50 plus tax (Refund Policy)

Or sign up for a free trial

Shaw Environmental, Inc, in collaboration with the City of Rialto and the Environmental Security Technology Certification Program (ESTCP), has conducted a demonstration study to treat perchlorate laden groundwater to drinking water standards using a fluidized bed biological reactor treatment train (FBR). This study focused on demonstrating: (1) the bioremediation of nitrate and perchlorate contaminated groundwater to current method reporting limits through a fluidized bed bioreactor with an added electron donor; (2) the short- and long-term performance effects in self-inoculating the system with the incoming groundwater; (3) the resulting short-term performance effects in the simulation of both a feed pump failure and an electrical shutdown; (4) the use of on-line, nitrate and perchlorate analyzers to continuously monitor the system treatment performance and to provide feed-forward control of the electron donor addition; (5) the use of a post aeration vessel, multimedia filter, and liquid granular activated carbon (LGAC) to produce a potable-like effluent water stream; and (6) the disinfection effects via chlorination and ultraviolet light on the system effluent.

For the study, all of the objectives were met or successfully demonstrated. Using only the groundwater to microbiologically seed the system, the FBR treatment plant removed all of the nitrate and perchlorate at the design loading conditions to meet the State of California Public Health Goal standards. In addition, the downstream equipment was operated to produce an effluent water of potable quality, meeting all State of California primary and secondary MCL requirements established under Title 22. The restart of the plant after the artificially induced system interruptions was rapid and required less than 24 hours to achieve acceptable treatment performance. The use of on-line instrumentation for rapid analysis of system performance proved effective and reliable. Such instrumentation was able to effectively control the feed rate of acetic acid, the chosen electron donor, to meet all performance objectives. Finally, chlorination disinfection studies indicated that E.Coli was not formed within the system, disinfection byproduct formation potential did not exceed State of California water standards, and microbial effluent concentrations could be effectively controlled using a CT value of 4.
No Reference information available - sign in for access.
No Citation information available - sign in for access.
No Supplementary Data.
No Article Media
No Metrics

Document Type: Research Article

Publication date: 2007-01-01

More about this publication?
  • Proceedings of the Water Environment Federation is an archive of papers published in the proceedings of the annual Water Environment Federation® Technical Exhibition and Conference (WEFTEC® ) and specialty conferences held since the year 2000. These proceedings are not peer reviewed.

    A subscription to the Proceedings of the Water Environment Federation includes access to most papers presented at the annual WEF Technical Exhibition and Conference (WEFTEC) and other conferences held since 2000. Subscription access begins 12 months after the event and is valid for 12 months from month of purchase. A subscription to the Proceedings of the Water Environment Federation is included in Water Environment Federation (WEF) membership.

    WEF Members: Sign in (right panel) with your IngentaConnect user name and password to receive complimentary access. Access begins 12 months after the conference or event
  • Subscribe to this Title
  • Membership Information
  • About WEF Proceedings
  • WEFTEC Conference Information
  • Learn about the many other WEF member benefits and join today
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more